0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Element Segregation on Thermal Aging Behavior of 17-4PH Martensitic Stainless Steel for Nuclear Power Plant

[+] Author Affiliations
Bing Bai, Hanxiao Wang, Changyi Zhang, Zhenfeng Tong, Wen Yang

China Institute of Atomic Energy, Beijing, China

Paper No. ICONE25-66977, pp. V002T03A076; 4 pages
doi:10.1115/ICONE25-66977
From:
  • 2017 25th International Conference on Nuclear Engineering
  • Volume 2: Plant Systems, Structures, Components and Materials
  • Shanghai, China, July 2–6, 2017
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5780-8
  • Copyright © 2017 by ASME

abstract

The valve stem used in the main steam system of nuclear power plant is usually 17-4PH martensitic stainless steel. When it served in 300 C° for a long time, the thermal aging embrittlement of valve stem will be significant, with the performance of the ductile brittle transition temperature (DBTT) and the hardness increased, the upper stage energy (USE) decreased. It will seriously affect the safety and economic operation of nuclear power plant (NPP). It is important to study the thermal aging effect of the 17-4PH steel for safe operation of nuclear power plant. In this work, Three-Dimensional Atom Probe (3DAP), Energy Dispersive X-Ray Spectroscopy (EDX), Scanning Electron Microscope (SEM) and Optical Microscope (OM) are used to analyze the element distribution in 17-4PH steel. The results show that lath martensite will grow significantly under high temperature for a long time. More δ-ferrite will be found between lath martensite, and some carbide aggregates at its interface. In addition, the number density of Cu clusters in the17-4PH steel is increased. It is found that Ni and Mn have obvious segregation with the Cu cluster.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In