0

Full Content is available to subscribers

Subscribe/Learn More  >

Proactive Approaches to Geohazard Management

[+] Author Affiliations
S. Ruik Beyhaut

ROSEN Group, Lingen, Germany

Paper No. IPG2017-2537, pp. V001T02A009; 6 pages
doi:10.1115/IPG2017-2537
From:
  • ASME 2017 International Pipeline Geotechnical Conference
  • ASME 2017 International Pipeline Geotechnical Conference
  • Lima, Peru, July 25–26, 2017
  • Conference Sponsors: Pipeline Systems Division
  • ISBN: 978-0-7918-5762-5
  • Copyright © 2017 by ASME

abstract

To control the threats from external forces, pipeline owners and operators require detailed information about their pipeline infrastructure and the environment surrounding that infrastructure. The contribution from geographic data is recognized as an increasingly important part of a complete integrity management program, particularly for the identification of geohazards. This is because geohazards are generally characterized by high spatial variability, are complex and difficult to quantify but may result in catastrophic failure of pipelines.

In recent years we have seen widespread technological development surrounding the processes to capture information in order to deliver quantitative inputs for pipeline engineers, risk & geotechnical experts. International codes & best practices (e.g. AS 2885.1-2012) state that “Environmental impact assessment is not simply a vehicle to obtain regulatory approval, it is a critical element of the planning for design, construction and operation of the pipeline.” Furthermore, geohazards frequently develop during the service life of pipelines. Consequently, regulators recommend that assessments are conducted on an ongoing basis to identify all potential threats and implement mitigation measures.

A process has been developed to create efficient and economical solutions for monitoring and assessing the significance of pipeline bending strain and whether actual movement has taken place. This process can make use of a variety of inputs including slope gradient, climate, groundwater conditions, slope instability, seismic intensity, and environmental impacts, and can provide important information in the determination of potential mitigations. This paper will review the benefits which can be gained from the implementation of integrated approaches to inform geohazard management.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In