0

Full Content is available to subscribers

Subscribe/Learn More  >

Flow Testing and Analysis of the FSP-1 Experiment

[+] Author Affiliations
Grant L. Hawkes, Warren F. Jones

Idaho National Laboratory, Idaho Falls, ID

Wade Marcum, Aaron Weiss, Trevor Howard

Oregon State University, Corvallis, OR

Paper No. NUCLRF2017-3639, pp. V009T03A005; 9 pages
doi:10.1115/NUCLRF2017-3639
From:
  • ASME 2017 Nuclear Forum collocated with the ASME 2017 Power Conference Joint With ICOPE-17, the ASME 2017 11th International Conference on Energy Sustainability, and the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2017 Nuclear Forum
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4059-7
  • Copyright © 2017 by ASME

abstract

The U.S. High Performance Research Reactor conversions fuel development team is focused on developing and qualifying the uranium-molybdenum (U-Mo) alloy monolithic fuel to support conversion of domestic research reactors to low enriched uranium. Several previous irradiations have demonstrated the favorable behavior of the monolithic fuel.

The Full Size Plate 1 (FSP-1) fuel plate experiment will be irradiated in the northeast (NE) flux trap of the Advanced Test Reactor (ATR). This fueled experiment contains six aluminum-clad fuel plates consisting of monolithic U-Mo fuel meat. Flow testing experimentation and hydraulic analysis have been performed on the FSP-1 experiment to be irradiated in the ATR at the Idaho National Laboratory (INL). A flow test experiment mockup of the FSP-1 experiment was completed at Oregon State University. Results of several flow test experiments are compared with analyses. This paper reports and shows hydraulic analyses are nearly identical to the flow test results.

A water channel velocity of 14.0 meters per second is targeted between the fuel plates. Comparisons between FSP-1 measurements and this target will be discussed. This flow rate dominates the flow characteristics of the experiment and model. Separate branch flows have minimal effect on the overall experiment. A square flow orifice was placed to control the flowrate through the experiment. Four different orifices were tested. A pressure differential versus flow rate curve for each orifice is reported herein. Fuel plates with depleted uranium in the fuel meat zone were used in one of the flow tests. This test was performed to evaluate flow test vibration with actual fuel meat densities and reported.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In