Full Content is available to subscribers

Subscribe/Learn More  >

Improvement of the RELAP5-3D Model of Condensation in the Presence of Noncondensables

[+] Author Affiliations
Nolan A. Anderson, George L. Mesina

Idaho National Laboratory, Idaho Falls, ID

Paper No. NUCLRF2017-3401, pp. V009T03A002; 6 pages
  • ASME 2017 Nuclear Forum collocated with the ASME 2017 Power Conference Joint With ICOPE-17, the ASME 2017 11th International Conference on Energy Sustainability, and the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2017 Nuclear Forum
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4059-7
  • Copyright © 2017 by ASME


Condensation of steam on the primary side of a steam generator in a pressurized water reactor (PWR) is one means of removing decay heat during some accident scenarios, including small break loss of coolant accident (SBLOCA). However, when noncondensable gasses mix with steam, it impairs condensation. To correctly predict plant behavior, nuclear power plant (NPP) safety analysis codes such as RELAP5-3D must model the effect of condensation in the presence of noncondensables properly.

A potential error in the RELAP5-3D code was reported in the condensation model in the presence of noncondensables by the University of Wisconsin[1]. The report indicated that the calculated condensation heat flux was under-predicted due to the modeling of the mass transfer in the gas mixture. The original documentation describing the implementation of the model was reviewed and compared with alternative formulations. An alternative that uses saturation vapor density at temperature of total pressure instead of the saturation vapor density at vapor partial pressure for calculating vapor mass flux was implemented. Comparison of the alternative method with the original against experimental data for several test cases showed improvement for most test cases.

Copyright © 2017 by ASME
Topics: Condensation



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In