0

Full Content is available to subscribers

Subscribe/Learn More  >

Investigation on Creep Mechanisms of Alloy 709

[+] Author Affiliations
Abdullah S. Alomari, Nilesh Kumar, Korukonda L. Murty

North Carolina State University, Raleigh, NC

Paper No. NUCLRF2017-3649, pp. V009T02A003; 6 pages
doi:10.1115/NUCLRF2017-3649
From:
  • ASME 2017 Nuclear Forum collocated with the ASME 2017 Power Conference Joint With ICOPE-17, the ASME 2017 11th International Conference on Energy Sustainability, and the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2017 Nuclear Forum
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-4059-7
  • Copyright © 2017 by ASME

abstract

To improve efficiency, safety, and reliability of nuclear reactors, structural materials for Gen-IV reactors are being designed and developed. Alloy 709, a 20Cr-25Ni austenitic stainless steel, has superior mechanical properties to be a preferred candidate material for Sodium Fast Reactor structural application. Creep tensile tests were performed at temperatures of 700 °C, 725 °C and 750 °C and range of stresses from 100 MPa to 250 MPa. The apparent stress exponent and activation energy were found to be 10.3±0.4 and 368.6±14.7 kJ/mol. Linear extrapolation method was used to rationalize the higher stress exponent and activation energy relative to the mechanism in power law creep yielding to a true stress exponent of 7.1 ± 0.3 and a true activation energy of 277 ± 12.8 kJ/mol which is close to the lattice diffusion of iron in Fe-20Cr-25Ni. Hence, the lattice diffusion controlled dislocation climb process is believed to be the rate controlling creep deformation mechanism in this range of stresses and temperatures. The appropriate constitutive equation was developed based on the results; however, microstructural evaluations are under investigation to confirm the rate controlling mechanism. In addition, creep tests at higher temperatures and lower stresses are being conducted to extend the stress and strain-rate ranges to observe possible transition in creep mechanism.

Copyright © 2017 by ASME
Topics: Creep , Alloys

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In