0

Full Content is available to subscribers

Subscribe/Learn More  >

Preliminary Design of a Wind Driven Vessel Dedicated to Hydrogen Production

[+] Author Affiliations
Jean-Christophe Gilloteaux, Aurélien Babarit

Ecole Centrale Nantes, Nantes, France

Paper No. OMAE2017-61408, pp. V010T09A065; 9 pages
doi:10.1115/OMAE2017-61408
From:
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 10: Ocean Renewable Energy
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5778-6
  • Copyright © 2017 by ASME

abstract

An innovative concept of harnessing wind energy is presented. The concept consists of a wind driven ship equipped with a hydro-generator that converts the kinetic energy of the water flow into electricity. The electricity is then converted into hydrogen by electrolysis. In the present study the use of a Flettner rotor is considered to propel the ship. A mathematical model of the hydrogen producing ship is developed based on existing data for high performance ship hulls and aerodynamic coefficients of existing Flettner rotors. The design is optimized with respect to the axial induction velocity through the water turbine disk. Results indicate that a 22m long vessel could produce 200 kW while a 80 m long vessel is able to generate 1 MW of mechanical power both for a true wind speed of 8 m/s.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In