0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation of Friction and Hydraulics in Circular and Non-Circular Wellbores With Oil Based Drilling Fluids

[+] Author Affiliations
Ali Taghipour, Bjørnar Lund, Jan David Ytrehus

SINTEF Petroleum Research, Trondheim, Norway

Paper No. OMAE2017-62024, pp. V008T11A064; 9 pages
doi:10.1115/OMAE2017-62024
From:
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5776-2
  • Copyright © 2017 by ASME

abstract

Borehole hydraulics, hole cleaning and mechanical friction are important factors for well planning and drilling operations. Many studies aim to exploit and optimize the effect of different operational parameters. The effect of wellbore geometry on hole cleaning and mechanical friction has so far not received much attention. This paper presents results from experimental laboratory tests where hydraulics, hole cleaning and mechanical friction have been investigated for circular and non-circular wellbore geometries with a relevant oil-based field drilling fluid (OBM). The non-circular wellbore geometry was made by adding spiral grooves to the wellbore walls in order to investigate the effects on cuttings transport and mechanical friction. The study contributes to describe the function and ability of deliberately induced non-circular geometry in wellbores as means to achieve a more efficient drilling and well construction. Improving hole cleaning will improve drilling efficiency in general, and will in particular enable longer reach for ERD wells. Reduced mechanical friction may improve the drilling process and many operations during the completion phase.

The laboratory experiments were performed in an advanced flow loop setup reproducing field-relevant flow conditions. The flow loop consists of a 10 m long 4” inner diameter borehole made of concrete. A free whirling rotational string with 2” diameter provides a realistic down hole annular geometry. A field-relevant oil based drilling fluid (OBM) was circulated through the test section at different flow rates. To represent the effect of rate of penetration, synthetic drilling cuttings (quartz sand particles) were injected at different rates through the annulus in the horizontal test section. The test results show that borehole hydraulics and cutting transport properties are significantly improved in the non-circular wellbore relative to the circular wellbore. The effect of the mechanical friction is more complex, yet significantly different for the two geometries.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In