Full Content is available to subscribers

Subscribe/Learn More  >

Visualization of Oil Droplets Within ESP Impellers

[+] Author Affiliations
Rodolfo Marcilli Perissinotto, William Monte Verde, Jorge Luiz Biazussi, Marcelo Souza de Castro, Antonio Carlos Bannwart

University of Campinas, Campinas, Brazil

Paper No. OMAE2017-62424, pp. V008T11A049; 8 pages
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5776-2
  • Copyright © 2017 by ASME


The objective of this research is to investigate the path of oil drops within an Electrical Submersible Pump (ESP) impeller, to evaluate its size and velocity as function of water flow rate and the ESP rotation speed. An experimental study was conducted at University of Campinas - Brazil with an ESP prototype designed to allow flow visualization within the impeller through a transparent shell. A high-speed camera with lighting set captures images of the oil droplets at a rate of 1000 frames per second. The set of data was performed at three rotational speeds — 600 rpm, 900 rpm and 1200 rpm — for three water flow rates — 80%, 100% and 120% of the best efficiency point (BEP). The results reveal that the oil drops become smaller when the rotational speed increases. The same behavior is noticed when the water flow rate increases. Generally, the oil droplets have spherical and elliptical shapes that change as function of their position inside the impeller channel. Furthermore, the drops have random trajectories, but a pattern can be detected in three cases: droplets near the pressure blade, droplets near the suction blade and droplets that move from the suction blade to the pressure blade. The average velocity of the oil droplets that move near the suction blade is significantly higher than the average velocity of the droplets that move near the pressure blade. Velocity changes as function of the impeller radius suggest different accelerations that may be caused by drag forces and pressure forces. The size of the oil drops has no significant influence on their velocities.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In