Full Content is available to subscribers

Subscribe/Learn More  >

Considerations on Numerical Procedure for Stick-Slip Analysis of Drill String

[+] Author Affiliations
Tokihiro Katsui, Kenta Izutani, Yuhi Nagaishi

Kobe University, Kobe, Japan

Tomoya Inoue, Miki Y. Matsuo

JAMSTEC, Yokohama, Japan

Chang-Kyu Rheem

University of Tokyo, Tokyo, Japan

Paper No. OMAE2017-62158, pp. V008T11A013; 9 pages
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5776-2
  • Copyright © 2017 by ASME


Stick-slip is one of the typical phenomenon which is observed in offshore drilling and considered as a critical problem for the drilling operation. The stick-slip makes a large fluctuation of drill bit rotation, even though the top of the drill pipe is rotating at a steady velocity and sometimes causes the damage of the drill bit. Additionally, it leads a crushing of the sediment layer which is a big problem especially for the scientific drilling [1][2][3]. The main purpose of the scientific drilling is to correct high quality core samples of sediment layers under the seabed. However, once the stick-slip occurs, it makes difficult to recover a high-quality sediment layer core sample. Therefore, it is necessary to detect the occurrence of stick-slip and its fundamental characteristics such as oscillation periods and amplitudes by simulation with the aid of surface drilling data, which can be monitored during the drilling operation to mitigate or prevent stick-slip. It would be advantageous to identify the characteristics of the stick-slip from the surface drilling data.

The past study [4][5][6] investigated a numerical method to analyze the stick-slip by solving the NDDE (Neutral Delay Differential Equation) which is derived from torsional vibration equation. A small-scale model experiment was conducted in a water tank to observe the stick-slip phenomenon, and the result from the analytical model is evaluated with that obtained from the experiments.

In this study, the numerical model is applied for the stick-slip analysis not only of the drill pipe model but also the actual drill pipe in operation. The solutions of the NDDE is depend on not the initial value but the initial history of the solution, because NDDE contains a delayed function term. Especially, the initial history settings have much effect on the numerical solution of NDDE in case of the actual drill pipe. Additionally, to solve the NDDE for stick-slip analysis, we must set some model parameters concerned with the frictional torque on drill bit. The present study investigated the effects of the initial history and the model parameters settings on numerical solutions in detail and presented an procedure to determine the appropriate settings of the initial history and the model parameters by reference to the measured top drive torque.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In