0

Full Content is available to subscribers

Subscribe/Learn More  >

Implementation of Circular Wave Measurements and Multiple Drilling Parameter Analysis in Rock Anisotropy Evaluation

[+] Author Affiliations
Abdelsalam N. Abugharara, Charles A. Hurich, John Molgaard, Stephen D. Butt

Memorial University of Newfoundland, St. John’s, NL, Canada

Paper No. OMAE2017-62088, pp. V008T11A012; 9 pages
doi:10.1115/OMAE2017-62088
From:
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5776-2
  • Copyright © 2017 by ASME

abstract

A laboratory procedure has been developed to evaluate the anisotropy of Rock Like Material (RLM), granite, red shale, and green shale. This procedure involves detailed anisotropy evaluation steps through implementing circular ultrasonic wave velocity measurements, representing physical measurement and multiple drilling parameters (MDP), representing drilling performance. The physical tests involved circular pattern measurements of compressional and shear wave velocities, VP and VS, respectively. The drilling tests involved drilling samples of each rock in different a 25.4 mm Diamond Coring bit. The MDP included the study of the variations of Rate of Penetration (ROP), bit cutter Depth of Cut (DOC), Revolution Per Minute (RPM), and Torque (TRQ). The MPD were studied as function of orientations under atmospheric pressure. In addition to the physical and drilling evaluation, mechanical tests, such as Oriented Unconfined Compressive Strength (OUCS) were also used in rock anisotropy evaluation. Concrete with fine aggregate and Portland cement is used as RLM for much of the laboratory work. This material was cast into cylinders measuring 101.6 mm by 152.4 mm and 203.2 mm by 203.2 mm, from which NQ; 47.6mm core samples were taken. Coring was performed in three main orientations including 0°, 45°, and 90°. Characterization tests were performed on the RLM cores as they were conducted on the natural rock that included granite and red shale as isotropic and vertical transverse isotropic rocks, respectively. A fully instrumented lab-scale rotary drilling rig was used in conducting the drilling experiments. Details on the strategy for the tests on the anisotropy evaluation with results from laboratory work on natural rocks and RLM are reported. Result of the effect of shale anisotropy orientation on the drilling parameters that influence ROP as means of anisotropy evaluation are also, reported.

Copyright © 2017 by ASME
Topics: Drilling , Anisotropy , Waves , Rocks

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In