Full Content is available to subscribers

Subscribe/Learn More  >

Temperature Dependent Torque and Drag for 3-D Wells: Model Description and Field Case Study

[+] Author Affiliations
Ekaterina Wiktorski, Martin Tveiterå, Dan Sui, Bernt S. Aadnoy

University of Stavanger, Stavanger, Norway

Paper No. OMAE2017-61230, pp. V008T11A010; 17 pages
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5776-2
  • Copyright © 2017 by ASME


Wellbore friction represents one of the biggest limitations for drilling and completion of long 3-dimensional wells. Traditionally, wellbore friction forces calculation is performed using soft-string torque and drag models, which assume tubular to be in contact with the wellbore at any point along its length. However, precise results are needed for wells with complex geometry and high doglegs.

This paper presents a novel way regarding wellbore friction forces calculation, which takes into account both wellbore deviation and wellbore tortuosity. To locate contact points of the string and the wellbore, a Dogleg Severity filter, or DLS-filter is proposed. The DLS-filter is integrated into soft-string torque and drag models by taking into account dogleg, wellbore geometry and depth. Such simple implementation of DLS-filter makes it applicable for any case only if survey data is available.

Fundamental understanding of drillstring mechanics and drilling fluids properties is essentially required in planning phase and drilling operations. To enhance the accuracy of torque and drag calculation, thermal effects on buoyancy forces and viscous forces have been studied. Experiments using one oil-based mud (OBM) recipe and one water-based mud (WBM) recipe have been conducted to measure viscosity and density of fluids in different pressure and temperature conditions. Based on the obtained results, viscosity model and density model as functions of pressure and temperature have been developed for better model interpretation of fluids thermal effects in HPHT conditions. Friction factor is a critical parameter to affect wellbore friction, which depends on fluids composition, contact surface, rotary speed, temperature, etc. Conventionally it is set constant for friction forces calculation. Experimental results show that the friction factor is heavily dependent on the temperature. In this study, friction factor was assumed to increase linearly with temperature for torque and drag calculation.

The new approach provides more correct values for torque and drag, and gives a better understanding of the downhole environment, as cuttings transport and drillstring dynamics. The study can be further used for the evaluation and recommendation of drilling muds for HPHT wells. Such analysis will aid in the design of appropriate drilling mud in the integrated well planning phase.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In