0

Full Content is available to subscribers

Subscribe/Learn More  >

Simulation of Ice Force and Breaking Pattern for Icebreaking Ship in Level Ice

[+] Author Affiliations
Junji Sawamura

Osaka University, Suita, Japan

Yutaka Yamauchi, Keisuke Anzai

Japan Marine United Corporation, Tsu, Japan

Paper No. OMAE2017-61583, pp. V008T07A032; 8 pages
doi:10.1115/OMAE2017-61583
From:
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5776-2
  • Copyright © 2017 by ASME

abstract

A 2D numerical model was proposed to predict the repetitive icebreaking pattern and ice force of an advancing ship in level ice are presented. The numerical model focuses on the icebreaking at the waterline and neglects the broken ice rotating and sliding underwater hull. The repeated ship-ice contact and bending failure of a floating ice along the waterline are evaluated numerically. The computed ice channel width and icebreaking resistance are compared with measured values in the model test. Numerical results show moderately good agreement with the model test data. The effects of ice thickness and ship speed on the icebreaking resistance are investigated numerically. The icebreaking resistance depends on both the ice thickness and ship speed. The ice channel, however, depends on ice thickness, but there is little difference in ship speed.

Copyright © 2017 by ASME
Topics: Simulation , Ice , Ships

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In