Full Content is available to subscribers

Subscribe/Learn More  >

Modelling of Nonlinear Wave-Buoy Dynamics Using Constrained Variational Methods

[+] Author Affiliations
Anna Kalogirou

University of East Anglia, Norwich, UK

Onno Bokhove

University of Leeds, Leeds, UK

David Ham

Imperial College London, London, UK

Paper No. OMAE2017-61966, pp. V07AT06A060; 10 pages
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 7A: Ocean Engineering
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5773-1
  • Copyright © 2017 by ASME


We consider a comprehensive mathematical and numerical strategy to couple water-wave motion with rigid ship dynamics using variational principles. We present a methodology that applies to three-dimensional potential flow water waves and ship dynamics. For simplicity, in this paper we demonstrate the method for shallow-water waves coupled to buoy motion in two dimensions, the latter being the symmetric motion of a crosssection of a ship. The novelty in the presented model is that it employs a Lagrange multiplier to impose a physical restriction on the water height under the buoy in the form of an inequality constraint. A system of evolution equations can be obtained from the model and consists of the classical shallow-water equations for shallow, incompressible and irrotational waves, and relevant equations for the dynamics of the wave-energy buoy. One of the advantages of the variational approach followed is that, when combined with symplectic integrators, it eliminates any numerical damping and preserves the discrete energy; this is confirmed in our numerical results.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In