0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Analysis of Submersible Mussel Raft for Exposed Marine Environment

[+] Author Affiliations
Xinxin Wang, Fenfang Zhao, Yanli Tang, Liuyi Huang, Rong Wan, Hui Cheng

Ocean University of China, Qingdao, China

Paper No. OMAE2017-61682, pp. V07AT06A055; 10 pages
doi:10.1115/OMAE2017-61682
From:
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 7A: Ocean Engineering
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5773-1
  • Copyright © 2017 by ASME

abstract

To study the hydrodynamic characteristics of the submersible mussel raft in waves and currents, the numerical model of the submersible raft was established based on the finite element method and kinematics theory. The finite element program Aqua-FE™ was applied to simulate the impacts of waves and currents on the hydrodynamic responses of the surface and submerged rafts, respectively. Morison Equation was applied to compute the tension of the mooring lines. Apart from the wave condition, the flow has a significant effect on the mooring line tension of the submersible raft. The submerged raft is useful for reducing the mooring loads. The submergence depth of the mussel raft can be adjusted depending on the marine environment. The results show that the submerged raft wave response was found to be reduced relative to the surface raft. The vertical motion of mussel rope connection points was significantly reduced by submergence, resulting in reduced potential for mussel drop-off. Compared the performance of the submerged raft in the same condition, the motion amplitude of the framework of the raft decreased significantly while increasing the submergence depth. At the same period, the trend of the decrease followed by levelling off with an increasing wave height. However, the submergence depth had no significant effect on the mooring line tension.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In