Full Content is available to subscribers

Subscribe/Learn More  >

Near Field Expression of Ship Wave Resistance by Yeung’s Method

[+] Author Affiliations
Takashi Tsubogo

Osaka Prefecture University, Sakai, Japan

Paper No. OMAE2017-61199, pp. V07AT06A006; 10 pages
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 7A: Ocean Engineering
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5773-1
  • Copyright © 2017 by ASME


The ship wave resistance can be evaluated by two alternative methods after solving the boundary value problem. One is the far field method e.g. Havelock’s formula, and another is the near field method based on direct pressure integration over the wetted hull surface. As is well known, there exist considerable discrepancies between wave resistance results by far field method and by near field method.

This paper presents a Lagally expression in consistency with Havelock’s formula. In order to derive the Lagally expression, the symmetry of Havelock’s Green function is used in the same manner as Yeung et al (2004). Another expression to examine the relation with water pressure integrations or to ensure physical consistency is also derived by slightly deforming that expression. Some numerical comparisons of wave resistance of Wigley, KCS and KVLCC2 models among by Havelock’s formula, some direct pressure integration methods and present two new near field expressions, are shown to demonstrate consistency numerically.

Copyright © 2017 by ASME
Topics: Waves , Ships



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In