Full Content is available to subscribers

Subscribe/Learn More  >

Improving the Panel-Free Method for the Prediction of Ship Motions and Wave Induced Loads

[+] Author Affiliations
Wei Qiu, Heather Peng, Junshi Wang, Shahriar Nizam

Memorial University, St. John’s, NL, Canada

Paper No. OMAE2017-61137, pp. V07AT06A004; 8 pages
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 7A: Ocean Engineering
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5773-1
  • Copyright © 2017 by ASME


Frequency-domain methods are proven efficient and reliable, especially for zero forward speed, in early design stage for the prediction of ship motions and wave-induced wave loads. There are still challenges for ships with forward-speed due to the inaccuracy in the computation of m-terms. In this paper, the panel-free method is further improved to predict motions and wave-induced loads on real ships with forward speeds. A simple algorithm has been developed to re-arrange the control points for Non-Uniform Rational B-Splines (NURBS) surfaces. This method led to reliable and accurate m-term computations and therefore improved ship motion and load predictions. Validation studies have been carried out for a hydroelastic model of a frigate. Computed motions and loads were compared with experimental data.

Copyright © 2017 by ASME
Topics: Stress , Waves , Ships



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In