Full Content is available to subscribers

Subscribe/Learn More  >

Feasibility Study of Selected Riser Concepts in Deep Water and Harsh Environment

[+] Author Affiliations
Gilang Muhammad Gemilang

University of Pertamina, Jakarta, Indonesia

Daniel Karunakaran

Subsea 7, Stavanger, Norway

Paper No. OMAE2017-62453, pp. V05BT04A044; 10 pages
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 5B: Pipelines, Risers, and Subsea Systems
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5770-0
  • Copyright © 2017 by ASME


One of the well-known riser systems, the Steel Catenary Riser (SCR), has been an attractive choice for the riser system in deep water. However, the main challenge of the SCR is large motions from the host platforms due to the harsh environment. The large motion of host platforms may induce excessive buckling and fatigue at the touchdown point. By screening the downward velocities at the hang-off point in the time history graph, the time at which the critical responses (i.e. buckling utilization, bending moment and compression) peak is identified. This study investigates the feasibility of the SCR configuration in terms of the capability to cope with the vessel motion.

Several types of the SCR configurations are proposed in this study. The selected configurations of SCR in this study are conventional SCR, Weight Distributed SCR (WDSCR), and Steel Lazy Wave Riser (SLWR). The feasibility of the three riser configurations was analyzed in terms of strength and fatigue performance to understand the limitation of one over the other. The “lazy wave” configuration efficiently absorbs the vessel heave motions. Thereby the SLWR configuration is proven to be the most robust configuration to cope with large motion of the host platform. This study proves that although the SCR feasibility is limited due to vessel heave motion, innovative solutions can be established to extend its feasibility in order to cope with the vessel heave motion in harsh environment.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In