0

Full Content is available to subscribers

Subscribe/Learn More  >

Developments in Testing and Manufacture of Thick-Walled Pipe

[+] Author Affiliations
Alastair Walker

VerdErg Pipe Technology Ltd, Perth, Australia

Jayden Chee

University of Western Australia, Perth, Australia

Peter Roberts

VerdErg Pipe Technology Ltd, London, UK

Paper No. OMAE2017-61083, pp. V05AT04A049; 11 pages
doi:10.1115/OMAE2017-61083
From:
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 5A: Pipelines, Risers, and Subsea Systems
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5769-4
  • Copyright © 2017 by ASME

abstract

Over the past 20 years there has been a considerable development of the capability to design and manufacture thick walled pipe to manufacture pipelines to operate in ultra-deep water. Design guidance is available in DNV OS F101 [1] in which the safety from pressure collapse failure during pipeline installation is determined by the use of a safety factor. The safety factor has been calibrated using the Load and Resistance Factor Design (LRFD) method in comparison with collapse pressure test results available at the time of preparation of DNV guidance. Because of the huge financial implications of loss of a very long pipeline during installation in ultra-deep water it has been the practice further to base the design of such a pipeline on specific pipe joint collapse tests in conjunction with the DNV information. Pressure testing full-scale pipe joints is an expensive undertaking that requires a suitable pressure chamber. Only a few chambers capable of applying pressures corresponding to very deep water are available in the world and transport of the pipes from the pipe mill to a suitable test facility may be very inconvenient and certainly expensive. This paper describes an alternative approach which could provide data that would enable the preparation of a safe approach specific to the pipeline diameter and design water depth. The approach could enable optimisation of the pipe design, particularly the pipe wall thickness. The proposed method is based on replacing costly full scale pipe tests by corresponding tests on ring specimens cut and machined from manufactured pipe joints. The proposal to use ring testing as the basis for design has been included successfully in the design of pipe for a recent ultra-deep water project [2]. The paper describes equipment used to subject the rings to external pressure and reports on tests carried out to validate the correspondence between the ring collapse pressure and that for the pipe joint from which the ring was obtained. Based on results from such tests it is concluded in this paper that ring pressure collapse testing is indeed a valid method to use as the basis for the design pipes in the next stage of ultra-deep water, i.e. increasing the capability to install pipeline in water depths down to 3500m from the current maximum level of 2500m.

Copyright © 2017 by ASME
Topics: Pipes , Testing

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In