0

# Two Phase Annular Flow Approximation Using 1-D Flow Equations Coupled With a Drift Flux Model for Concurrent Flow in Vertical or Near Vertical Channels

[+] Author Affiliations
Ashwin A. Gadgil, Robert E. Randall

Texas A&M University, College Station, TX

Paper No. OMAE2017-61480, pp. V05AT04A048; 8 pages
doi:10.1115/OMAE2017-61480
From:
• ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
• Volume 5A: Pipelines, Risers, and Subsea Systems
• Trondheim, Norway, June 25–30, 2017
• Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
• ISBN: 978-0-7918-5769-4

## abstract

Annular flow is a flow regime of two-phase gas-liquid flow dominated by high gas flowrate moving through the center of the pipe (gas core). In this paper we have developed and studied an innovative phenomenological model which combines the Zuber & Findlay’s Drift Flux Model’s weighted mean value approach [1] with the 1-D flow approximation equations. The flow is described in terms of a distribution parameter and an averaged local velocity difference between the phases across the pipe cross-section. The average void fraction is calculated as a function of the ratio of weighted mean gas velocity to the weighted mean liquid velocity (Slip ratio) and the drift flux velocity. The void fraction thus estimated is then applied to the 1-D continuity, momentum and energy equations. The equations are solved simultaneously to obtain the pressure gradient. Lastly, we obtain the liquid film thickness using the triangular hydrodynamic relationship between the liquid flow rate, pressure gradient and the liquid film thickness. The thickness of layer obtained, is then used to verify the original estimate of the void fraction. An iterative procedure is used to match the original estimate to the final value. The results from this study were validated against PipeSIM© software and two field measurements conducted on a wet-gas field in Brazil. As opposed to conventional drift flux models which are based on four simultaneous equations, this model relies on three, thereby significantly reducing the computational resources necessary and is more accurate as we account for variable velocities and void fractions across the pipe cross-section.

## Interactive Graphics

### Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

### Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Proceedings Articles
Related eBook Content
Topic Collections