0

Full Content is available to subscribers

Subscribe/Learn More  >

The Effect of Stick Stiffness of Friction Models on the Bending Behavior in Non-Bonded Flexible Risers

[+] Author Affiliations
Tianjiao Dai, Svein Sævik

NTNU, Trondheim, Norway

Naiquan Ye

SINTEF Ocean, Trondheim, Norway

Paper No. OMAE2017-62644, pp. V05AT04A041; 5 pages
doi:10.1115/OMAE2017-62644
From:
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 5A: Pipelines, Risers, and Subsea Systems
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5769-4
  • Copyright © 2017 by ASME

abstract

This paper investigates the effect of stick stiffness on the bending behavior in non-bonded flexible risers. The stick stiffness was normally implemented in the friction model for calculating the friction stress between layers in such structures. As the stick stiffness may be too small to achieve the plane-surfaces-remain-plane assumption under low contact pressure in some friction models [1], a new friction model was proposed for maintaining the constant stick stiffness in the present work. Less stick stiffness than that obtained by the plane-surfaces-remain-plane assumption was observed in test data. It was assumed that the stick stiffness reduction is caused by shear deformation of plastic layers. A numerical study on stick stiffness by including the shear deformation effect was carried out and verified against full scale tests with respect to the bending moment-curvature relationship.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In