0

Full Content is available to subscribers

Subscribe/Learn More  >

A Surrogate Model for Predicting Stress Intensity Factor: An Application to Oil and Gas Industry

[+] Author Affiliations
Arvind Keprate, R. M. Chandima Ratnayake

University of Stavanger, Stavanger, Norway

Shankar Sankararaman

SGT Inc., NASA Ames Research Center, Moffett Field, CA

Paper No. OMAE2017-61091, pp. V004T03A020; 12 pages
doi:10.1115/OMAE2017-61091
From:
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 4: Materials Technology
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5768-7
  • Copyright © 2017 by ASME

abstract

Evaluation of the stress intensity factor (SIF) for a crack propagating in a structural component is the analytical basis of linear elastic fracture mechanics (LEFM) approach. Handbook solutions give accurate SIF results for simple crack geometries. For intricate crack geometries and complex loading conditions finite element method (FEM), is used to predict SIF. The main drawback of FEM techniques is that they are prohibitively expensive in terms of computing cost and also very time consuming. In this manuscript, authors have presented a Gaussian Process Regression Model (GPRM), which may be used as an alternative to FEM for predicting SIF of a propagating crack. The GPRM is firstly trained using 70 SIF values obtained by FEM, and then validated by comparing the values of SIF predicted by GPRM and FEM for 30 data points (i.e. combination of crack size and loading). On comparing the aforementioned values the average residual percentage between the two is 2.57%, indicating good agreement between GPRM and FEM model. Also, the time required to predict SIF of 30 data points is reduced from 30 mins (for FEM) to 10 seconds with the help of proposed GPRM.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In