Full Content is available to subscribers

Subscribe/Learn More  >

High Cycle Fatigue Damage Evaluation of Steel Pipelines Based on Microhardness Changes During Cyclic Loads

[+] Author Affiliations
Geovana Drumond, Bianca Pinheiro, Ilson Pasqualino

Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

Francine Roudet, Didier Chicot, Xavier Decoopman

University Lille 1, Lille, France

Paper No. OMAE2017-62677, pp. V004T03A018; 10 pages
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 4: Materials Technology
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5768-7
  • Copyright © 2017 by ASME


Fatigue is a major cause of failures concerning metal structures, being capable of causing catastrophic damage to the environment and considerable financial loss. Steel pipelines used in oil and gas industry for hydrocarbon transportation, for instance, are submitted to the action of cyclic loads, being susceptible to undergo fatigue failures. The phenomenon of metal fatigue is a complex process comprising different successive mechanisms. In general, four stages can be identified, representing microcrack initiation (nucleation), microcracking, macrocrack propagation, and final fracture. Fatigue damage prior to nucleation of microcracks is primarily related to localized plastic strain development at or near material surface during cycling. The microhardness of the material shows its ability to resist microplastic deformation caused by indentation or penetration, and is closely related to the material plastic slip capacity. Therefore, the study of changes in material surface microhardness during the different stages of fatigue process can estimate the evolution of the material resistance to microplastic deformations and, consequently, provide relevant information about the cumulated fatigue damage on the surface. The present work is part of a research study being carried out with the aim of proposing a new method based on microstructural changes, represented by a fatigue damage indicator, to predict fatigue life of steel structures submitted to cyclic loads, before macroscopic cracking. In a previous work, the X-ray diffraction technique was used to evaluate these changes. This technique presents several advantages, since it is non-destructive and concerns the surface and subsurface of the material, where major microstructural changes take place during fatigue. The most important parameter obtained by this technique is the full width at half maximum (FWHM) of the diffraction peak, which can provide information about the dislocation network density and estimate microdeformations. It was found that the evolution of this parameter with cycling presents three different stages, associated to the mechanisms of microcrack initiation, microcracking, macrocrack propagation, respectively. Here, the fatigue damage of pipeline steels is evaluated through microhardness testing. Different stages of changes in microhardness are also found and they are correlated to those observed with the X-ray technique and also with transmission electron microscopic (TEM) images from experimental tests performed with a similar material. This correlation can help to corroborate the X-ray diffraction results previously obtained and recommend then this non-destructive technique as the base of the method for predicting fatigue life of steel structures proposed here.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In