0

Full Content is available to subscribers

Subscribe/Learn More  >

Ultimate Bearing Capacity Assessment of Hull Girder With Asymmetric Cross-Section

[+] Author Affiliations
ChenFeng Li, Peng Fu, HuiLong Ren, WeiJun Xu

Harbin Engineering University, Harbin, China

C. Guedes Soares

Universidade de Lisboa, Lisbon, Portugal

Paper No. OMAE2017-62172, pp. V03BT02A046; 13 pages
doi:10.1115/OMAE2017-62172
From:
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 3B: Structures, Safety and Reliability
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5766-3
  • Copyright © 2017 by ASME

abstract

The objective of this study is to investigate the variation of neutral axis of ship hull girder due to asymmetric geometry or asymmetric load, and its influence on the ultimate strength of hull girder. In order to account for asymmetric geometries and loads of hull girders, the force equilibrium and force-vector equilibrium criteria together with a minimum convergence factors (error) method, are employed to determine the translation and rotation of neutral axis plane of symmetric or asymmetric hull cross-section in the application of Smith’s method at each step of curvature of the hull girder. The ultimate strengths of Dow’s 1/3 frigate model with three predefined structural integrity states, one intact and two damaged respectively, are investigated by the improved Smith’s method for a range of variation of heeling angles. The influence of asymmetric geometry and load on the motion of neutral axis plane and on the ultimate strength are analyzed and discussed. The results show that the improved iteration strategy together with the MCFM is self-adapting and more accurate in searching the translation and rotation of neutral axis plane. Finally, the envelope curves of the bending moments in the three predefined integrity states are obtained, which can be used for assessing ultimate strength of hull girders under combined vertical and horizontal wave bending moments.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In