0

Full Content is available to subscribers

Subscribe/Learn More  >

Structural Reliability Analysis for Offshore Drilling Riser Deployment Operability

[+] Author Affiliations
Xiaodong Zhang, Hezhen Yang, Ying Min Low, Chan Ghee Koh

National University of Singapore, Singapore, Singapore

Peter Francis Bernad Adaikalaraj

Keppel Offshore and Marine Technology Center, Singapore, Singapore

Paper No. OMAE2017-61575, pp. V03BT02A006; 7 pages
doi:10.1115/OMAE2017-61575
From:
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 3B: Structures, Safety and Reliability
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5766-3
  • Copyright © 2017 by ASME

abstract

Drilling riser system provides a short-term connection between subsea oil well and drilling vessel or platform. The analysis of different operability envelopes are required for drilling riser analysis, for example, connected drilling, connected non-drilling and hang-off analysis. The operability envelope analysis could provide operators statistical information for riser operational management.

The current practice to calculate the drilling operability envelope is to use deterministic approach. However, deterministic approach could not take the randomness from environmental loadings and structures into consideration. Structural reliability method is an analysis tool to quantify probability of failure of components or systems accounting for uncertainties in environmental conditions and system parameters. It is particularly useful in cases where limited experience exists or a risk-based evaluation of design is required. It is gaining increasing popularity in the offshore and marine industry to predict failure probability.

In this paper, structural reliability analysis is adopted to analyze the offshore drilling riser deployment. The uncertainties are mainly from wave and current loadings. The significant wave height HS is modeled by a Weibull probability density function, the zero-crossing wave period TZ conditional on HS is modeled by a lognormal distribution, and the surface current speed is modeled as Weibull distribution. Multiple simulations are performed by software Flexcom [1] and efficient structural reliability methods are adopted to get the failure probabilities. The deployment operability will be calculated based on structural reliability methods and the results will be compared with those calculated based on deterministic approach.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In