0

Full Content is available to subscribers

Subscribe/Learn More  >

Joint Time-Frequency Analysis of Small Scale Ocean Storms via the Harmonic Wavelet Transform

[+] Author Affiliations
Valentina Laface, Felice Arena

“Mediterranea” University of Reggio Calabria, Reggio Calabria, Italy

Ioannis A. Kougioumtzoglou, Ketson Roberto Maximiano dos Santos

Columbia University, New York, NY

Paper No. OMAE2017-61761, pp. V03AT02A046; 8 pages
doi:10.1115/OMAE2017-61761
From:
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 3A: Structures, Safety and Reliability
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5765-6
  • Copyright © 2017 by ASME

abstract

The paper focuses on utilizing the Harmonic Wavelet Transform (HWT) for estimating the evolutionary power spectrum (EPS) of sea storms. A sea storm is considered herein as a non-stationary stochastic process with a time duration of the order of days. The storm evolution can be represented in three stages: the growth, the peak and the decay. Specifically, during growth the intensity of the wave increases with time until reaching the apex, and then decreases. The analysis is carried out by processing the time series of the free surface elevation recorded at the Natural Ocean Engineering Laboratory of Reggio Calabria, Italy. A peculiarity of the NOEL lab is that a local wind from NNW often generates sea states consisting of pure wind waves that represent a small scale model, in Froude similarity, of ocean storms (www.noel.unirc.it). The main focus of the paper is, first, to acquire a joint time-frequency representation of the storm via estimating the associated EPS, and second, to explore the variability in time of the spectrum and of the dominant frequencies of the storm. The EPS is estimated by utilizing a non-stationary record of the sea surface elevation during a storm recorded at NOEL lab.

Further, in this paper, the standard representation of sea storms is also considered. That is, the non-stationary process is represented as a sequence of stationary processes (sea states or buoy records), each of them characterized by an intensity defined by a significant wave height Hs and by a duration Δt. During the time interval Δt the sea surface elevation is considered stationary and the frequency spectrum may be computed via the Fast Fourier Transform (FFT). Results obtained following this procedure, which can be considered essentially as a brute-force application of the short-time FT, are compared with those obtained via a HWT based joint time-frequency analysis.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In