0

Full Content is available to subscribers

Subscribe/Learn More  >

Research on Ship Structural Fatigue Damage Under Nonlinear Wave Bending Moment

[+] Author Affiliations
Jingxia Yue, Lihua Peng

Wuhan University of Technology, Wuhan, China

Wengang Mao

Chalmers University of Technology, Gothenburg, Sweden

Chi Zhang

National University of Singapore, Singapore, Singapore

Wei Dong

China Ship Development and Design Center, Wuhan, China

Zhentao Zhu

Shanghai Bestway Marine Engineering Research and Design CO., LTD, Shanghai, China

Paper No. OMAE2017-62328, pp. V03AT02A042; 8 pages
doi:10.1115/OMAE2017-62328
From:
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 3A: Structures, Safety and Reliability
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5765-6
  • Copyright © 2017 by ASME

abstract

Loads acting on ship structures are complex and randomly over time and the nonlinear effect caused by wave loading is one of the research focus. The linear and nonlinear vertical wave bending moment (VBM) in different speeds and sea states and their effects on ship structural fatigue strength were investigated for a flat container with high ratio of width to depth. The VBM under the linear regular waves and irregular waves were calculated based on the three dimension (3D) potential theory. The considered nonlinear wave loading was caused by sea pressure near the mean free surface as well as the geometric nonlinearity. Hydrodynamic calculations in regular wave were presented to figure out the frequency response function (FRF) of VBM in the mid-ship section. Irregular waves were verified to obtain the VBM history in 4 sea states. What’s more, VBMs from a segmented elastic model test were obtained to investigate the influence of nonlinearity. On the basis of the wave loadings obtained from simulation and test, the hotspot stress histories under irregular waves were deduced in time domain by using the beam theory. Fatigue cumulative damage per hour under several random sea states were obtained on the basis of the rain-flow counting and S-N curve. Based on the fatigue damage from the numerical analysis and model test, it is believed that speeds and significant wave height have a positive correlation with the fatigue damage of ship structures. A good agreement was obtained between the numerical analysis values and the low frequency part of the test and the nonlinear analysis in the simulation could offer reasonable prediction for the fatigue damage caused by the wave frequency response. Also shown as the test result, fully nonlinearities have a great contribution to the fatigue damage.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In