Full Content is available to subscribers

Subscribe/Learn More  >

Automated Identification of Critical Tubular Joints of Offshore Jacket Structure by Deterministic Fatigue Analysis

[+] Author Affiliations
Shrikarpagam Dhandapani

Indian Institute of Technology Madras, Chennai, India

Paper No. OMAE2017-61785, pp. V03AT02A036; 8 pages
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 3A: Structures, Safety and Reliability
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5765-6
  • Copyright © 2017 by ASME


Fatigue occurs in structures due to the stresses from cyclic environmental loads. Offshore environmental loads being highly cyclic and recurring in nature, fatigue analysis with high degree of accuracy is required for reliable and optimized design of offshore structures. The main aim of this paper is to automate the process of identification of fatigue critical tubular joints of an offshore jacket structure using deterministic fatigue analysis with emphasis on the Hot Spot Stress Range (HSSR), an important measure in estimating fatigue damage, calculated using three different approaches for each tubular joint. The first approach determines HSSR at the time of maximum base shear of the jacket, the second, by calculating the difference between maximum and minimum Hot Spot Stress (HSS) and the third, at all time-instants of the wave cycle. Thus fatigue damage and fatigue life of the tubular joints are estimated using the highest HSSR value and the joints with lower fatigue life are identified as fatigue sensitive joints. This ensures effective identification of critical tubular joints of the offshore jacket structure which needs detailed investigation or redesign for fatigue. The deterministic approach discussed in this paper is applicable to large jackets which contains more number of tubular joints where sophisticated fatigue assessment at the preliminary stage is computationally intensive and manual identification of fatigue critical joints is laborious.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In