Full Content is available to subscribers

Subscribe/Learn More  >

Wave Load Prediction on a Stationary Bergy Bit Near a Fixed Offshore Platform

[+] Author Affiliations
Dong Cheol Seo, Tanvir Sayeed, M. Hasanat Zaman, Ayhan Akinturk

National Research Council Canada, St. John’s, NL, Canada

Paper No. OMAE2017-62392, pp. V03AT02A030; 7 pages
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 3A: Structures, Safety and Reliability
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5765-6
  • Copyright © 2017 by Government of Canada


Offshore oil and gas operations conducted in harsh environments such offshore Newfoundland may pose additional risks due to collision of smaller ice pieces and bergy bits with the offshore structures, including their topsides in the case of gravity based structures particularly in extreme waves. In this paper, CFD (Computational Fluid Dynamics) prediction for wave loads acting on a bergy bit around a fixed offshore platform is presented. Often the vertical column of a gravity based structure is designed against ice collisions, if operating in such an environment. In practices, topsides are usually protected by being placed sufficiently high from the still water level, away from the reach of the bergy bits. This vertical clearance between the still water level and the topside deck is known an air gap. Hence, the amount of the air gap planned for such an offshore structure is an important factor for the safety of the topsides at a given location. In this study a CFD method is applied to estimate the dynamic response of the bergy bit and provide a reliable air gap to reduce the potential risk of the bergy bit collision. In advance of more complex collision simulations using a free-floating ice for the airgap design, CFD analysis of wave load prediction on a stationary bergy bit is carried out and reported in this paper. In the experiments and CFD simulations, the location of the bergy bit is changed to quantify the change of wave load due to the hydrodynamic interaction between the bergy bit and the platform. Finally, the results of the CFD simulations are compared with the relevant experiment results to confirm the simulation performance prior to the free floating bergy bit simulations.

Copyright © 2017 by Government of Canada



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In