Full Content is available to subscribers

Subscribe/Learn More  >

Prediction of Vortex Shedding Control by Means of Splitter Plates

[+] Author Affiliations
Shaoshi Dai, Rongyu Zhang, Hongyang Zhang

Harbin Engineering University, Harbin, China

Bassam A. Younis

University of California - Davis, Davis, CA

Paper No. OMAE2017-62707, pp. V002T08A046; 6 pages
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 2: Prof. Carl Martin Larsen and Dr. Owen Oakley Honoring Symposia on CFD and VIV
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5764-9
  • Copyright © 2017 by ASME


The paper presents preliminary results of a computational study aimed at quantifying the effectiveness of splitter plates in reducing the strength of vortex shedding from circular cylinders at high Reynolds number. The principal interest is in determining the optimal ratio of splitter plate width to cylinder diameter to achieve maximum reduction in the magnitude of the fluctuating lift and drag forces relative to their original values. The computations were performed using the URANS approach. The effects of turbulence were accounted for using a turbulence closure that has been adapted to account for the effects of organized vortex shedding on the random turbulent motions. Comparisons with experimental data show that this approach is successful in capturing the main effects that arise from the attachment of splitter plates to the cylinder base.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In