0

Full Content is available to subscribers

Subscribe/Learn More  >

Interaction Between IL and CF VIV: On the Importance of Orbital Direction

[+] Author Affiliations
K. H. Aronsen

Statoil ASA, Fornebu, Norway

Z. Y. Huang

Petrell AS, Trondheim, Norway

K. B. Skaugset

Statoil ASA, Trondheim, Norway

C. M. Larsen

Norwegian University of Science and Technology, Trondheim, Norway

Paper No. OMAE2017-62404, pp. V002T08A042; 17 pages
doi:10.1115/OMAE2017-62404
From:
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 2: Prof. Carl Martin Larsen and Dr. Owen Oakley Honoring Symposia on CFD and VIV
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5764-9
  • Copyright © 2017 by ASME

abstract

This paper discusses results from an experiment where forces on a rigid cylinder are measured during prescribed oscillations both in-line with and transverse to a constant flow. Two “figure of eight” oscillation patterns with identical shape but opposite orbital direction, relative to the flow, have been tested at a Reynolds number of 24000. Results show that the hydrodynamic force acting on the cylinder is significantly different for the two orbital directions. The force in phase with velocity, which represents the energy transfer between the fluid and the cylinder, has opposite sign and different magnitude for the two orbital directions. Flow visualization by particle image velocimetry (PIV) reveals that the two orbits leads to different vortex shedding modes. Hydrodynamic forces at multiples of the oscillation frequency, known as higher harmonics, are seen for both orbital directions. Comparison with pure in-line and pure transverse oscillations indicates that the higher harmonics are related to oscillations in in-line direction. A three-dimensional Large Eddy Simulation numerical simulation with equivalent experiment parameters has been conducted. It is very encouraging to see a good agreement between numerical results and observations with respect to global forces, vortex shedding modes and hydrodynamic co-efficients.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In