Full Content is available to subscribers

Subscribe/Learn More  >

Prediction of Combined IL and CF VIV Response of Deepwater Risers

[+] Author Affiliations
Jie Wu, Elizabeth Passano

SINTEF Ocean, Trondheim, Norway

Malakonda Reddy Lekkala, Muk Chen Ong

University of Stavanger, Stavanger, Norway

Per Erlend Voie

DNV GL, Trondheim, Norway

Paper No. OMAE2017-61766, pp. V002T08A040; 10 pages
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 2: Prof. Carl Martin Larsen and Dr. Owen Oakley Honoring Symposia on CFD and VIV
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5764-9
  • Copyright © 2017 by ASME


Deepwater risers are susceptible to Vortex Induced Vibrations (VIV) when subjected to currents. When responding at high modes, fatigue damage the in in-line (IL) direction may become equally important as the cross-flow (CF) components. If a riser experiences directional currents, fatigue damage must be evaluated at several locations on the cross-section’s circumference. Accurate calculation of both IL and CF responses are therefore needed.

Empirical VIV prediction programs, such as VIVANA, SHEAR7 and VIVA, are the most common tools used by the offshore industry to design against VIV loads. Progress has been seen in the prediction of CF responses. Efforts have also been made to include an IL load model in VIVANA. A set of excitation coefficient parameters were obtained from rigid cylinder test and adjusted using measured responses of one of the flexible cylinder VIV tests. This set of excitation coefficient parameters is still considered preliminary and further validation is required. Without an accurate IL response prediction, a conservative approach in VIV analysis has to be followed, i.e. all current profiles have to assumed to be uni-directional or acting in the same direction.

The purpose of the present paper is to provide a reliable combined IL and CF load model for the empirical VIV prediction programs. VIV prediction using the existing combined IL and CF load model in VIVANA is validated against selected flexible cylinder test data. A case study of a deepwater top tension riser (TTR) has been carried out. The results indicate VIV fatigue damage 1 using 2D directional current profiles is less conservative compared to the traditional way of using unidirectional current profiles.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In