Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Investigation on Vessel Motion-Induced VIV for a Free Hanging Riser Under Small Keulegan-Carpenter Numbers

[+] Author Affiliations
Jungao Wang, Rohan Shabu Joseph, Muk Chen Ong, Jasna Bogunović Jakobsen

University of Stavanger, Stavanger, Norway

Paper No. OMAE2017-61705, pp. V002T08A038; 10 pages
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 2: Prof. Carl Martin Larsen and Dr. Owen Oakley Honoring Symposia on CFD and VIV
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5764-9
  • Copyright © 2017 by ASME


A free-hanging riser is a typical riser configuration seen in the disconnected drilling riser, the water-intake riser and the deep-sea mining riser. In offshore productions, these marine risers will move back and forth in water and further generate an equivalent oscillatory current around themselves, due to the vessel motions. Both in marine operations in the field and model tests, it has been reported that such oscillatory current lead to riser vortex-induced vibration (VIV) and cause structural fatigue damage. Recently, there have been some attempts to numerically predict vessel motion-induced VIV on the compliant production risers, with emphasize on relatively large Keulegan-Carpenter (KC) numbers. In the real marine operations, the risers experience small KC number scenarios during most of their service life. Therefore, the investigation of vessel motion-induced VIV under small KC number is of great significance, especially considering its contribution to fatigue damage. In this paper, numerical investigation of VIV of a free-hanging riser attached to a floating vessel is carried out. A new response frequency model for vessel motion-induced VIV under small KC numbers is proposed and implemented in VIVANA. Validation of the proposed numerical methodology is performed against the published experimental results, where a good agreement is achieved.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In