Full Content is available to subscribers

Subscribe/Learn More  >

Vortex-Induced Motion of a Free-Standing Riser Below the Critical Mass Ratio

[+] Author Affiliations
Curtis Florager

University of Tasmania, Launceston, Australia

Cheslav Balash

Edith Cowan University, Perth, Australia

Paper No. OMAE2017-61399, pp. V002T08A032; 7 pages
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 2: Prof. Carl Martin Larsen and Dr. Owen Oakley Honoring Symposia on CFD and VIV
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5764-9
  • Copyright © 2017 by ASME


The presented work studied the vortex-induced motion (VIM) response of a free-standing riser (FSR) with varied riser length and buoyancy can (BC) mass with an ultimate aim to find a combination that would reduce the motion of the system. Specifically, four model configurations were experimentally tested in a flume tank over a range of flow velocities, with the BC motion recorded by a submersible camera positioned directly above the model; consequently, inline (IL) and crossflow (CF) amplitudes were estimated with a motion tracking software. In the pre-resonant flow regime, non-dimensionally, minimal differences were observed between the CF amplitudes, and the IL motion was reduced with a longer riser. Given the extreme length of full-scale FSRs and inherent low natural frequency, it is impractical to increase the riser tension to a point where VIM would not occur under normal environmental conditions. Alternatively, increasing the mass ratio of the BC so that it is above the critical mass ratio of 0.54 (the ratio of the mass of the body to the mass of the fluid) would limit the resonant flow velocities to a finite range, but a larger BC may not be an economically viable solution, and because of the increased diameter, it would experience a larger CF amplitude during resonance. Further study into the prevention of VIM of an FSR by varying the riser length and BC mass is unlikely to be beneficial.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In