0

Full Content is available to subscribers

Subscribe/Learn More  >

Determining Thruster-Hull Interaction for a Drill-Ship Using CFD

[+] Author Affiliations
Arjen Koop, Hans Cozijn, Patrick Schrijvers, Guilherme Vaz

MARIN, Wageningen, Netherlands

Paper No. OMAE2017-61485, pp. V002T08A022; 13 pages
doi:10.1115/OMAE2017-61485
From:
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 2: Prof. Carl Martin Larsen and Dr. Owen Oakley Honoring Symposia on CFD and VIV
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5764-9
  • Copyright © 2017 by ASME

abstract

In this paper CFD results are presented for the thruster-hull interaction effects for a drillship with 6 azimuthing thrusters. The results using different approaches to model or simulate the propeller are compared and their advantages and disadvantages are discussed. The approaches investigated are the so-called Frozen Rotor approach, where the propeller rotation is modeled, the Actuator Disk approach with prescribed body forces and the unsteady Sliding Interface approach where the motion of the propeller is simulated in time.

First, open-water calculations for a tilted thruster are carried out using the Frozen Rotor approach. The open-water calculations are repeated using the Actuator Disk prescribing the propeller thrust and torque distribution obtained from the Frozen Rotor calculations. The results with Actuator Disk are very similar for the unit thrust and nozzle thrust compared to the results using the Frozen Rotor approach. Furthermore, the results using the Frozen Rotor or the Actuator Disk are very close to the experimental results for the nozzle thrust.

The thruster-hull interaction of one active thruster under the drillship is investigated using the Actuator Disk approach, the Frozen Rotor Approach and the Sliding Interface approach. A comparison to experimental results is presented for the thruster-hull interaction coefficients. Using the Actuator Disk a good agreement with the experiments is obtained. The results using the Actuator Disk and Sliding Interface are very similar to each other, but the computational costs for the Sliding Interface method are at least a factor 20 higher. The results using the Frozen Rotor deviate due to an unphysical wake behind the thruster.

Based on the results presented in this paper we conclude that, using the steady-state approach with the Actuator Disk, CFD can be a cost-efficient and accurate method to determine the thruster-hull interaction effects at bollard pull conditions for a typical offshore vessel.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In