0

Full Content is available to subscribers

Subscribe/Learn More  >

Validation of Open-Source SPH Code DualSPHysics for Numerical Simulations of Water Entry and Exit of a Rigid Body

[+] Author Affiliations
Sergei K. Buruchenko

South Ural State University, Snezhinsk, Russia

Ricardo B. Canelas

Universidade de Lisboa, Lisbon, Portugal

Paper No. OMAE2017-61221, pp. V002T08A021; 8 pages
doi:10.1115/OMAE2017-61221
From:
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 2: Prof. Carl Martin Larsen and Dr. Owen Oakley Honoring Symposia on CFD and VIV
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5764-9
  • Copyright © 2017 by ASME

abstract

Water entry and exit of a body is an important topic in naval hydrodynamics as these phenomena play relevant roles both for offshore structures and vessels. Water entry and exit events are intrinsically transient and represent intense topological changes in the system, with large amounts of momentum exchange between phases. At its onset, they can be characterized by highly localized, both in space and time, loads on the vessel, influencing both the local structural safety of the structure and the global loads acting on it.

The DualSPHysics code is proposed as a numerical tool for the simulation of fluid and floating object interaction. The numerical model is based on a Smoothed Particle Hydrodynamics discretization of the Navier-Stokes equations and Newton’s equations for rigid body dynamics. This paper examines the water impact, fluid motions, and movement of objects in the conventional case studies of object entry and exit from still water. A two dimensional body drop analysis was carried out demonstrating acceptable agreement of the movement of the object with published experimental and numerical results. The velocity field of the fluid is also captured and analyzed. Simulations for water entry and exit of a buoyant and neutral density cylinder compares well with previous experimental, numerical, and empirical studies in penetration, free surface evolution and object kinematics. These results provide a good foundation to evaluate the accuracy and stability of the DualSPHysics implementation for modeling the interaction between free surface flow and free moving floating objects.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In