0

Full Content is available to subscribers

Subscribe/Learn More  >

Validation Study of Smoothed Particle Hydrodynamics in Fluid and Structure Interaction and the Comparison to Boundary Element Method

[+] Author Affiliations
Nhu Nguyen, Krish P. Thiagarajan, Matthew Cameron

University of Maine, Orono, ME

Paper No. OMAE2017-62285, pp. V002T08A006; 10 pages
doi:10.1115/OMAE2017-62285
From:
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 2: Prof. Carl Martin Larsen and Dr. Owen Oakley Honoring Symposia on CFD and VIV
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5764-9
  • Copyright © 2017 by ASME

abstract

The purpose of this research is to validate the usage of Smoothed Particle Hydrodynamics (SPH) method in solving fluid-structure interaction problems as well as study its advantages and disadvantages compared to another well-known technique Boundary Element Method (BEM). The goal is achieved by 1) evaluating the Response Amplitude Operator (RAO) and 2) analyzing the drifting motion of a 1:10 scaled 3m-discus oceanographic buoy developed by the National Oceanographic and Atmospheric Administration (NOAA), using both experimental and numerical approaches. For the experimental study, the testing was carried out in an 8-m long wave tank and the buoy motions were measured using non-intrusive techniques. For numerical analysis, the project used DualSPHysics — open source code — and ANSYS AQWA — one of the leading software widely used in the marine applications — to simulate all the experimental scenarios via SPH and BEM techniques respectively. It is observed that while BEM has clear advantages in computational time and the ability to study applicable range of frequencies, SPH, in addition to its capability to simulate drifting motion of the floating structure, has shown to outperform the RAO predictions from BEM (especially in low frequency region). In higher frequency regions, the lack of experimental data hinders the conclusion on which method might be more suitable, as both have their own limitations.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In