0

Full Content is available to subscribers

Subscribe/Learn More  >

The Influence of Hold-Back Vessels on the Operation of a DP Drilling Rig: Control System and Stability Analysis

[+] Author Affiliations
Alex S. Huang, Eduardo Aoun Tannuri, Asdrubal N. Queiroz Filho, André S. S. Ianagui

Universidade de São Paulo, São Paulo, Brazil

Douglas G. T. Yuba

Petrobras Research Center, Rio de Janeiro, Brazil

Sérgio Nogueira, Thiago C. Abdalla

Petrobras E&P, Rio de Janeiro, Brazil

Paper No. OMAE2017-61153, pp. V001T01A068; 12 pages
doi:10.1115/OMAE2017-61153
From:
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1: Offshore Technology
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5763-2
  • Copyright © 2017 by ASME

abstract

Certain maritime operations require the accurate positioning of the vessel, and in order to accomplish that DP (dynamic positioning) systems were developed. It combines the information obtained from sensors with the expected dynamic of the ship to better estimate its actual position and the external forces, and with those information the controller allocates the forces among the available actuators so the vessel keeps a desired position.

In situations where drift of the vessel could cause great harm (human, material or environmental losses) it might be necessary to provide additional safeguards. One possible solution is to connect an AHTS (anchor handling tug supply) to the original DP vessel, in order to complement the forces generated by its thrusters. However as shown by Jensen (2008) and IMCA M 185 (2012), this connection could actually degrade the position keeping ability of the vessel, nullifying the purpose of improving the safety of the operation.

The objective of the present paper is to confirm the hypothesis that the use of hold-back vessels to support DP drilling rigs may degrade the performance of the DP system, causing dynamic instability, and to determine the boundaries of operation under which this phenomenon occurs: sea state, parameters of the vessels and force transmitted by the hold-back vessel.

Firstly, an analytical study of the system was done. It was considered a simplified model of two vessels connected by a cable with two degrees of freedom (one for each vessel), since the force applied by a cable is unidirectional. Using control theory, the limiting stiffness of the cable was determined by analyzing the poles of the system. Considering a catenary model for the connecting cable, it was possible to determine the maximum force that could be transmitted between the vessels without the system becoming unstable. The influence of the Kalman Filter in the stability of the system was also studied.

Those results were then compared and confirmed with fast time dynamic simulations of the system, in which the influence of different environmental conditions were also added to the analysis. To complete the study, real time simulations were done on a full mission simulator, equipped with the original Kongsberg DP system for the drilling rig.

The simplified model showed consistent results, validated by the simulations, demonstrating it can be a useful tool when analyzing the stability of two connected vessels.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In