Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Studies on Vortex-Induced Motions of a Semi-Submersible With Four Columns Based on IDDES Model

[+] Author Affiliations
Xiaofeng Hu, Xinshu Zhang, Yunxiang You

Shanghai Jiao Tong University, Shanghai, China

Paper No. OMAE2017-62164, pp. V001T01A056; 10 pages
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1: Offshore Technology
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5763-2
  • Copyright © 2017 by ASME


The vortex-induced motions (VIM) of deep draft semi-submersible platforms have been challenging engineering issues because of its impact to the fatigue life of mooring and riser systems. This paper presents numerical studies on the vortex-induced motions (VIM) of a deep draft semi-submersible. Numerical simulations are performed by using an improved delayed detached eddy simulation (IDDES). VIM amplitudes for in-line (surge), transverse (sway) and yaw motions and hydrodynamic force coefficients are obtained for different current incidence angles. The sensitivity analyses on grids and time step sizes are carried out to ensure convergences of the computational results. Comparisons with experimental data demonstrate the capability of the present numerical model. It is observed that the transverse motions for 22.5° current incidence are larger than those for 0° and 45° current incidences. The mean drag force coefficients for these simulated current incidence angles tend to grow as the transverse motion amplitudes increase. In addition, parametric studies have also been performed to examine the effects of the column corner radius on VIM.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In