0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Determination of the Effect of Bow Shape on the Wave Drift Load

[+] Author Affiliations
Anne Boorsma, Kees Aalbers, Riaan van ‘t Veer

SBM Offshore, Schiedam, Netherlands

René Huijsmans

Delft University of Technology, Delft, Netherlands

Paper No. OMAE2017-61361, pp. V001T01A041; 10 pages
doi:10.1115/OMAE2017-61361
From:
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1: Offshore Technology
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5763-2
  • Copyright © 2017 by ASME

abstract

In the last forty years wave drift loads have been calculated with methods based on the near-field theory (hull pressure integration, Pinkster [4]) and/or the far field method (linear momentum theory). Both methods use linear theory and through its formulation ignore the ship’s hull form above the mean water line. It is evident that in survival sea-states the small motion assumptions are violated and the hull form above the mean water line can affect the motion characteristics of the ship and the drift loads. In order to get more insight in this effect, SBM has conducted a systematic model test campaign at the TU Delft using an Aframax size tanker.

The campaign included tests with two different bow shapes: the original bow with flare, and a wall-sided bow. Horizontal loads on the complete vessel and a section of the bow only were measured accompanied by measurements of the ship motions and relative wave heights. Measurements were performed for various wave heights and periods. Numerous repeat tests were conducted to establish the confidence level of the measurement data.

Measurements have shown motions and relative wave heights are dependent on wave height. It was suggested that viscous damping may play a part in this.

The relative wave height in high waves is affected by bow shape; namely the finite draft, the flare and the bulb. How this departure from linear theory affects the forces on the vessel should be investigated further.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In