0

Full Content is available to subscribers

Subscribe/Learn More  >

Semi-Empirical Crest Distributions of Long-Crest Nonlinear Waves of Three-Hour Duration

[+] Author Affiliations
Zhenjia (Jerry) Huang

ExxonMobil Upstream Research Company, Spring, TX

Qiuchen Guo

University of California, Berkeley, Berkeley, CA

Paper No. OMAE2017-61226, pp. V001T01A038; 8 pages
doi:10.1115/OMAE2017-61226
From:
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1: Offshore Technology
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5763-2
  • Copyright © 2017 by ASME

abstract

In wave basin model test of an offshore structure, waves that represent the given sea states have to be generated, qualified and accepted for the model test. For seakeeping and stationkeeping model tests, we normally accept waves in wave calibration tests if the significant wave height, spectral peak period and spectrum match the specified target values. However, for model tests where the responses depend highly on the local wave motions (wave elevation and kinematics) such as wave impact, green water impact on deck and air gap tests, additional qualification checks may be required. For instance, we may need to check wave crest probability distributions to avoid unrealistic wave crest in the test. To date, acceptance criteria of wave crest distribution calibration tests of large and steep waves of three-hour duration (full scale) have not been established.

The purpose of the work presented in the paper is to provide a semi-empirical nonlinear wave crest distribution of three-hour duration for practical use, i.e. as an acceptance criterion for wave calibration tests. The semi-empirical formulas proposed in this paper were developed through regression analysis of a large number of fully nonlinear wave crest distributions. Wave time series from potential flow simulations, computational fluid dynamics (CFD) simulations and model test results were used to establish the probability distribution. The wave simulations were performed for three-hour duration assuming that they were long-crested. The sea states are assumed to be represented by JONSWAP spectrum, where a wide range of significant wave height, peak period, spectral peak parameter, and water depth were considered. Coefficients of the proposed semi-empirical formulas, comparisons among crest distributions from wave calibration tests, numerical simulations and the semi-empirical formulas are presented in this paper.

Copyright © 2017 by ASME
Topics: Nonlinear waves

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In