0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of a CFD Model to Simulate Three-Dimensional Gap Resonance Applicable to FLNG Side-by-Side Offloading

[+] Author Affiliations
Hongchao Wang, Scott Draper, Wenhua Zhao, Hugh Wolgamot, Liang Cheng

University of Western Australia, Perth, Australia

Paper No. OMAE2017-61673, pp. V001T01A032; 11 pages
doi:10.1115/OMAE2017-61673
From:
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1: Offshore Technology
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5763-2
  • Copyright © 2017 by ASME

abstract

This paper addresses the process of establishing a numerical model to accurately reproduce experimental results presented by Zhao et al. (2017) of three-dimensional (3D) gap resonance between two fixed ship-shaped boxes. The ship-shaped boxes were arranged in a side-by-side configuration to represent FLNG offloading and were subjected to NewWave-type transient wave groups. To develop the numerical model we employ the open-source Computational Fluid Dynamics (CFD) package OpenFOAM and systematically optimize mesh topology and size, domain size and boundary conditions. CFD is necessary for this problem to accurately reproduce the viscous losses and non-linear free surface effects that are observed in the experiments. The incident transient wave group used in the experiment is regenerated using various iterative schemes. The results show satisfactory agreements between the target and regenerated waves.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In