Full Content is available to subscribers

Subscribe/Learn More  >

A Step Towards a Reduced Order Modelling of Flow Characterized by Wakes Using Proper Orthogonal Decomposition

[+] Author Affiliations
Eivind Fonn, Adil Rasheed, Mandar Tabib

Sintef Digital, Trondheim, Norway

Trond Kvamsdal

NTNU, Trondheim, Norway

Paper No. OMAE2017-62435, pp. V001T01A011; 6 pages
  • ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 1: Offshore Technology
  • Trondheim, Norway, June 25–30, 2017
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5763-2
  • Copyright © 2017 by ASME


High fidelity simulations of flow might be quite demanding, because they involve up to O(106 – 109) degrees of freedom and several hours (or even days) of computational time, also on powerful hardware parallel architectures. Thus, high-fidelity techniques can become prohibitive when we expect them to deal quickly and efficiently with the repetitive solution of partial differential equations. One set of partial differential equation that we encounter on a regular basis is the Navier Stokes Equation which is used to simulate flow around complex geometries like sub-sea structures. To address the issues associated with computational efficiency, a field of Reduced Order Modelling is evolving fast. In this paper we investigate Proper Orthogonal Decomposition as a potential method for constructing reduced bases for Reduced Order Models. In the case of flows around cylindrical bodies we found that only a few modes were sufficient to represent the dominant flow structures and energies associated with them making POD to be an attractive candidate for bases construction.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In