Full Content is available to subscribers

Subscribe/Learn More  >

A Comparative Assessment on Static and Dynamic PCA for Fault Detection in Natural Gas Transmission Systems

[+] Author Affiliations
Horacio Pinzón, Cinthia Audivet, Melitsa Torres, Javier Alexander, Marco Sanjuán

Promigas S.A. E.S.P., Barranquilla, Columbia

Paper No. ES2017-3613, pp. V001T10A003; 8 pages
  • ASME 2017 11th International Conference on Energy Sustainability collocated with the ASME 2017 Power Conference Joint With ICOPE-17, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum
  • ASME 2017 11th International Conference on Energy Sustainability
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-5759-5
  • Copyright © 2017 by ASME


Sustainability of natural gas transmission infrastructure is highly related to the system’s ability to decrease emissions due to ruptures or leaks. Although traditionally such detection relies in alarm management system and operator’s expertise, given the system’s nature as large-scale, complex, and with vast amount of information available, such alarm generation is better suited for a fault detection system based on data-driven techniques. This would allow operators and engineers to have a better framework to address the online data being gathered.

This paper presents an assessment on multiple fault-case scenarios in critical infrastructure using two different data-driven based fault detection algorithms: Principal component analysis (PCA) and its dynamic variation (DPCA).

Both strategies are assessed under fault scenarios related to natural gas transmission systems including pipeline leakage due to structural failure and flow interruption due to emergency valve shut down. Performance evaluation of fault detection algorithms is carried out based on false alarm rate, detection time and misdetection rate. The development of modern alarm management frameworks would have a significant contribution in natural gas transmission systems’ safety, reliability and sustainability.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In