0

Full Content is available to subscribers

Subscribe/Learn More  >

An Investigation of a Novel Structure Polycrystalline Silicon Solar Cell for Concentrated Solar Power

[+] Author Affiliations
Ali Radwan, Mohamed Emam, Radwan M. Elzoheiry

Egypt-Japan University of Science and Technology, Alexandria, Egypt

Mahmoud Ahmed

Assiut University, Assiut, Egypt

Paper No. ES2017-3388, pp. V001T08A002; 12 pages
doi:10.1115/ES2017-3388
From:
  • ASME 2017 11th International Conference on Energy Sustainability collocated with the ASME 2017 Power Conference Joint With ICOPE-17, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum
  • ASME 2017 11th International Conference on Energy Sustainability
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-5759-5
  • Copyright © 2017 by ASME

abstract

To achieve reliable and efficient operation of generic polycrystalline silicon solar cell under concentrated sunlight, a novel structure of the cell layers is proposed along with effective cooling technique using microchannel heat sink (MCHS). In the novel structure, Boron Nitride with the volume fraction of 20%, 40%, and 60% as a filler is incorporated in the Ethylene Vinyl Acetate (EVA) matrix to form a new composite. The new composite is used instead of the conventional EVA layer in the solar cell. Various solar cell structures integrated with MCHS are studied and compared with the conventional structure. To determine the performance of the developed concentrated photovoltaic thermal (CPVT) system, a comprehensive three-dimensional model of the solar cell with heat sink is developed. The model is numerically simulated and validated. Based on the validated results, it is found that the novel structure with EVA-60% BN composite along with aluminum foil back sheet attains 30% increase in the gained solar cell electric power with 10.9 % reduction in the cell temperature compared with the conventional solar cell structure at the same cooling mass flow rate of 50 g/min and concentration ratio of 20. However at CR = 20, Vw = 1m/s and Ta = 30°C a significant damage of the conventional solar cell structure will occurs if no effective cooling technique is used. Moreover, the developed design of solar cell achieves a higher CPVT-system thermal efficiency compared with the conventional one.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In