Full Content is available to subscribers

Subscribe/Learn More  >

Mechanical Modal Phenomena of a Ganged Heliostat

[+] Author Affiliations
Kenneth M. Armijo, Jesus D. Ortega, Adam Moya, Joshua Christian, Gregory Peacock, Charles Andraka, Julius Yellowhair

Sandia National Laboratories, Albuquerque, NM

Jim Clair

Skysun, LLC, Bay Village, OH

Paper No. ES2017-3635, pp. V001T05A014; 6 pages
  • ASME 2017 11th International Conference on Energy Sustainability collocated with the ASME 2017 Power Conference Joint With ICOPE-17, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum
  • ASME 2017 11th International Conference on Energy Sustainability
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-5759-5
  • Copyright © 2017 by ASME


Ganged-heliostats have the potential for large cost reductions with enhanced solar collector field optimization. Unlike typical heliostats that require dual axis tracking actuators and a base or foundation, ganged-heliostats can share actuation and a support structure. This membership greatly reduces system infrastructure and installation costs. However, concentrating solar power (CSP) heliostats are subjected to wind-induced loads, vibration, and gravity-induced deformations. These effects could impact performance and reliability of these structures, where despite the many advantages for the utility of ganged heliostats, modal limitations exist from wind perturbations. In this investigation, an introductory multiphysics finite element analysis (FEA) model was developed using SolidWorks Simulation software to validate experimental measurements of a novel small-scale ganged heliostat system, parametrically under varying azimuth rotations, facet pitch levels, and cable tension levels. The ganged heliostat design featured a number of mirrors resting on two guide wires which were tensioned and rotated to align with any given target. Experimentally, several standard modal tests were conducted on the ganged heliostat, which was designed to operate under a number of orientations, where for this investigation two scenarios were selected to be representative of an operational heliostat. The heliostat was oriented at a 0° (face up) and 45° orientations for the modal test configurations. The modal tests were computationally validated in good agreement with the experiments to within 2.8% and 6.3% error for 0° and 45° orientations respectively.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In