0

Full Content is available to subscribers

Subscribe/Learn More  >

Design and Testing of a Novel Bladed Receiver

[+] Author Affiliations
Jesus D. Ortega, Joshua M. Christian, Clifford K. Ho

Sandia National Laboratories, Albuquerque, NM

Paper No. ES2017-3524, pp. V001T05A007; 9 pages
doi:10.1115/ES2017-3524
From:
  • ASME 2017 11th International Conference on Energy Sustainability collocated with the ASME 2017 Power Conference Joint With ICOPE-17, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum
  • ASME 2017 11th International Conference on Energy Sustainability
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-5759-5
  • Copyright © 2017 by ASME

abstract

Previous research at Sandia National Laboratories showed the potential advantages of using light-trapping features which are not currently used in direct tubular receivers. A horizontal bladed receiver arrangement showed the best potential for increasing the effective solar absorptance by increasing the ratio of effective surface area to the aperture footprint. Ray-tracing analyses using SolTrace were performed to understand the light-trapping effects of the bladed receivers, which enable re-reflections between the fins that enhance the effective solar absorptance. A parametric optimization study was performed to determine the best possible configuration with a fixed intrinsic absorptivity of 0.9 and exposed surface area of 1 m2. The resulting design consisted of three vertical panels 0.584 m long and 0.508 m wide and 3 blades 0.508 m long and 0.229 m wide with a downward tilt of 50 degrees from the horizontal. Each blade consisted of two panels which were placed in front of the three vertical panels. The receiver was tested at the National Solar Thermal Test Facility using pressurized air. However, the receiver was designed to operate using supercritical carbon dioxide (sCO2) at 650 °C and 15 MPa for 100,000 hours following the ASME Boiler and Pressure Vessel Code Section VIII Division 1. The air flowed through the leading panel of the blade first, and then recirculated toward the back panel of the blade before flowing through one of the vertical back panels. The test results of the bladed receiver design showed a receiver efficiency increase over a flat receiver panel of ∼5 – 7% (from ∼80% to ∼86%) over a range of average irradiances, while showing that the receiver tubes can withstand temperatures > 800 °C with no issues. Computational fluid dynamics (CFD) modeling using the Discrete Ordinates (DO) radiation model was used to predict the temperature distribution and the resulting receiver efficiencies. The predicted thermal efficiency and surface temperature values correspond to the measured efficiencies and surface temperatures within one standard deviation. In the near future, an sCO2 flow system will be built to expose the receiver to higher pressure and fluid temperatures which could yield higher efficiencies.

Copyright © 2017 by ASME
Topics: Design , Testing

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In