0

Full Content is available to subscribers

Subscribe/Learn More  >

Parametric Study of Cascade Latent Heat Thermal Storage System for Concentrating Solar Power Plants

[+] Author Affiliations
Ben Xu, Hermes Chirino

University of Texas Rio Grande Valley, Edinburg, TX

Yawen Zhao

Chinese Academy of Sciences, Beijing, China

Peiwen Li

University of Arizona, Tucson, AZ

Paper No. ES2017-3096, pp. V001T05A001; 9 pages
doi:10.1115/ES2017-3096
From:
  • ASME 2017 11th International Conference on Energy Sustainability collocated with the ASME 2017 Power Conference Joint With ICOPE-17, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum
  • ASME 2017 11th International Conference on Energy Sustainability
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-5759-5
  • Copyright © 2017 by ASME

abstract

Recently, Concentrated Solar Power (CSP) is attracting more research attentions because it can store the excessive heat from the solar field and extend the power generation at night, CSP can also levelized the mismatch between energy demand and supply. To make CSP technology competitive, thermal energy storage (TES) system filled with energy storage media is a critical component in all CSP plant.

TES system can be operated by using sensible materials, phase change materials (PCMs) or a combination of both. Because the phase change materials can store more heat due to the latent during the melting/freezing process, it becomes promising to use PCM in latent heat thermal energy storage (LHTES) system for large scale CSP application. Unfortunately, LHSS has relatively low energy storage efficiency compared to SHSS alone because of the fact that LHSS has more parameters to be controlled and optimized.

To realize a complete utilization of PCM and a high energy storage/extraction efficiency and a high exergetic efficiency, one approach is to adopt a cascade configuration of multiple PCMs modules in TES tank, which can also be called as a cascade latent heat thermal energy storage (CLHTES) system. The melting temperatures of the PCMs placed in the TES tank should be cascaded from low to high temperature, where the latent heat of PCM can completely be used to absorb the heat from the solar field for energy storage purpose.

Due to the complexity of a CLHTES system, it is necessary to provide a comprehensive study from the heat transfer perspective. This paper presents a preliminary parametric study of CLHTES system using a previously developed enthalpy-based 1D transient model for energy storage/extraction in CLHTES system. The effects of material properties (such as latent heat, specific heat at solid and liquid phase) and CSP plant operation conditions (such as charging/discharging time period) are to be explored. The results from the preliminary parametric study is expected to be beneficial to the community of solar thermal engineering.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In