0

Full Content is available to subscribers

Subscribe/Learn More  >

A Spatially Resolved Physical Model for Dynamic Modeling of a Novel Hybrid Reformer-Electrolyzer-Purifier (REP) for Production of Hydrogen

[+] Author Affiliations
Derek McVay, Li Zhao, Jack Brouwer

National Fuel Cell Research Center, Irvine, CA

Fred Jahnke, Matt Lambrech

FuelCell Energy Inc., Danbury, CT

Paper No. ES2017-3192, pp. V001T02A005; 6 pages
doi:10.1115/ES2017-3192
From:
  • ASME 2017 11th International Conference on Energy Sustainability collocated with the ASME 2017 Power Conference Joint With ICOPE-17, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum
  • ASME 2017 11th International Conference on Energy Sustainability
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-5759-5
  • Copyright © 2017 by ASME

abstract

A molten carbonate electrolysis cell (MCEC) is capable of separating carbon dioxide from methane reformate while simultaneously electrolyzing water. Methane reformate, for this study, primarily consists of carbon dioxide, hydrogen, methane, and a high percentage of water. Carbon dioxide is required for the operation of a MCEC since a carbonate ion is formed and travels from the reformate channel to the sweep gas channel. In this study, a spatially resolved physical model was developed to simulate an MCEC in a novel hybrid reformer electrolyzer purifier (REP) configuration for high purity hydrogen production from methane and water. REP effectively acts as an electrochemical CO2 purifier of hydrogen.

In order to evaluate the performance of REP, a dynamic MCEC stack model was developed based upon previous high temperature molten carbonate fuel cell modeling studies carried out at the National Fuel Cell Research Center at the University of California, Irvine. The current model is capable of capturing both steady state performance and transient behavior of an MCEC stack using established physical models originating from first principals. The model was first verified with REP experimental data at steady state which included spatial temperature profiles. Preliminary results show good agreement with experimental data in terms of spatial distribution of temperature, current density, voltage, and power. The combined effect of steam methane reformation (SMR) and water electrolysis with electrochemical CO2 removal results in 96% dry-basis hydrogen at the cathode outlet of the MCEC. Experimental measurements reported 98% dry-basis hydrogen at the cathode outlet.

Copyright © 2017 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In