Full Content is available to subscribers

Subscribe/Learn More  >

Design and Development of a Battery Internal Short Circuit Test Machine

[+] Author Affiliations
Scott C. DeLaney, Mary B. Burbules, Adam S. Hollinger

Penn State Behrend, Erie, PA

Mayank Garg, Christopher D. Rahn

Pennsylvania State University, University Park, PA

Paper No. ES2017-3407, pp. V001T01A001; 5 pages
  • ASME 2017 11th International Conference on Energy Sustainability collocated with the ASME 2017 Power Conference Joint With ICOPE-17, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum
  • ASME 2017 11th International Conference on Energy Sustainability
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-5759-5
  • Copyright © 2017 by ASME


The use of lithium-based batteries, due to their high energy density, has become popular for power sources in portable electronic devices. Safety concerns over lithium cell applications have arisen due to their lower abuse tolerance compared to standard battery designs. Internal short circuits present one of the more dangerous abuse situations since there is a great potential of thermal runaway leading to fire and explosion. Field failures and recalls associated with internal short circuits demonstrate the risks of lithium batteries. Understanding the response of lithium cells under internal short circuit conditions is of great importance to ensure the safe development of lithium battery application. In this work, an internal short circuit test machine was designed to conduct nail penetration tests of lithium chemistry cells. The test machine successfully provides the required force to allow for multi-cell penetration. The test machine also provides accurate control of the penetrating nail’s position and velocity. This testing will support the development of models to simulate the mechanism of internal short circuits of lithium cells.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In