Full Content is available to subscribers

Subscribe/Learn More  >

Transient Analysis of Simultaneous Multivariable Signals on Fuel Cell/Gas Turbine Hybrid to Define Control Strategies for Cathode Parameters and Compressor Stall

[+] Author Affiliations
Bernardo Restrepo

Universidad del Turabo, Gurabo, PR

David Tucker

National Energy Technology Laboratory, Morgantown, WV

Paper No. FUELCELL2017-3555, pp. V001T01A004; 9 pages
  • ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2017 Power Conference Joint With ICOPE-17, the ASME 2017 11th International Conference on Energy Sustainability, and the ASME 2017 Nuclear Forum
  • ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology
  • Charlotte, North Carolina, USA, June 26–30, 2017
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 978-0-7918-4056-6
  • Copyright © 2017 by ASME


Transients in a hybrid system composed of a solid oxide fuel cell (SOFC) and a gas turbine (GT) were evaluated during simultaneous manipulation of system airflow bypasses and turbine electric load. The three airflow bypass valves selected for study were chosen for their potential application in controlling dynamic excursions of the main fuel cell and gas turbine parameters in the system. The objective of this work was to understand the physical behavior by the simultaneous operation of the bypass valves along with the turbine electric load in order to formulate scenarios of control on the key parameters relevant to system failure, specifically from compressor stall and surge. Empirical data was collected using the National Energy Technology Laboratory Hybrid Performance project hardware simulation of a SOFC/GT hybrid. Step changes were implemented in all three valves for various open/close valve commands and increase/decrease of the turbine electric load simultaneously. The transient response of process variables was analyzed to determine the potential for mitigating or aggravating compressor stall and surge during load excursions.

Copyright © 2017 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In